KURUKSHETRA UNIVERSITY, KURUKSHETRA

(ESTABLISHED BY THE STATE LEGISLATURE ACT XII OF 1956) ('A+' GRADE NAAC ACCREDITED)

Scheme & Syllabus of B.Tech. Degree in Electrical and Computer Engineering (ECO)

(w.e.f. session 2023-24 onwards)

Table of Contents

S. No.	Title	Page No.
1	General Course Structure & Credit Distribution	3-7
2	Semester Wise Structure	8
3	Semester I	9
4	Semester II	10
5	Semester III	11
6	Semester IV	12
7	Semester V	13
8	Semester VI	14
9	Semester VII	15
10	Semester VIII	16
11	Minor Degree	17

GENERAL COURSE STRUCTURE

&

CREDIT DISTRIBUTION

GENERALCOURSESTRUCTURE & THEME

A. Definition of Credit*:

1Hr. Lecture(L) per week	1Credit
1Hr.Tutorial(T)per week	1Credit
1Hr.Practical(P)per week	0.5Credit
2HoursPractical(P)per week	1Credit

*Except for the Manufacturing process workshop, mandatory and value-added courses

- **B. Range of Credits:** The total number of credits proposed for the four-year B.Tech. degree in Electrical and Computer Engineering (ECO) is kept as 175. In addition, for a B.Tech. with Honors & specialization/minor degree, the student must acquire an additional 18-20 credits through MOOC courses offered at the SWAYAM/NPTEL portal.
- **C. Structure of UG Program in** Electrical and Computer Engineering (ECO): The structure of UG program in Electrical and Computer Engineering (ECO) has essentially the following categories of courses with the breakup of credits as given:

Sr. No.	Category	Credit Breakup for CSE
1	Humanities and Social Sciences including Management courses	16.5
2	Basic Science courses	24
3	Engineering Science courses including workshop, drawing, basics of electronics/ electrical/mechanical/computer etc.	13.5
4	Professional core courses	78
5	Program Elective courses relevant to chosen specialization/branch	15
6	Open subjects-Electives from other technical and/or emerging subjects	03
7	Project work, seminar and internship in industry or else where	17
8	Mandatory and Audit Courses [IDEA Workshop, IDEA Workshop Lab, Personality Development and Soft Skills, Environmental Studies, Induction Program, Constitution of India, Essence of Indian Knowledge Tradition, NCC/NSS/Sports/ Yoga/ Technical or Cultural Club/ Society Activities]	08
	Total	175

D. Course code and definition:

Course code	Definitions
L:T:P	Lecture: Tutorial: Practical
BSC	Basic Science Courses
ESC	Engineering Science Courses
HSC/HSM	Humanities and Social Sciences including Management courses
ECO	Program Core Courses
EEP	Program Elective Courses
EEO	Open Elective Courses
VAC	Value Added Courses
MAC	Mandatory Courses

> Category-wise Courses

HUMANITIES & SOCIAL SCIENCES COURSES [HSC/HSM]

S.No	Course No./	Subject	Semester		Hrs/v	week	Credits
	Code			Lecture	Tutorial	Practical	
1	B23-HSC-101	English for Technical Writing	II	2	0	2	3
2	B23-HSC-102	Design Thinking	Ι	0	0	3	1.5
3	B23-HSM-101	Universal Human Values-II:	Ι	3	0	0	3
		Understanding Harmony And Ethical					
		Human Conduct					
4	B23-HSM-202	Innovation, Start ups and	V	3	0	0	3
		Entrepreneurship					
5	B23-HSM-201	Organizational Behaviour	III	3	0	0	3
6	B23-HSM-302	Humanities–II Intellectual Property	IV	3	0	0	3
		Rights (IPR) and Regulatory					
						16.5	

BASIC SCIENCE COURSES [BSC]

S.	Course No./	Subject	Semester		Hrs/week		
No	Code			Lecture	Tutorial	Practical	
1	B23-BSC-101	Semiconductor Physics	Ι	3	1	2	5
2	B23-BSC-107	Mathematics-I	Ι	3	1	0	4
3	B23-BSC-104	Engineering Chemistry	II	3	0	2	4
4	B23-BSC-108	Mathematics-II	II	3	1	0	4
5	B23-BSC-106	Biology	II	3	0	0	3
6	B23-BSC-203	Mathematics-III	IV	3	1	0	4
Total Credits							24

ENGINEERING SCIENCE COURSE[ESC]

S.	Course	Subject	Semester		Hrs/week		
No	No./ Code			Lecture	Tutorial	Practical	
1	B23-ESC-102	Engineering Graphics and Design	Ι	1	0	4	3
2	B23-ESC-104	Basic Electrical Engineering	Ι	3	1	2	5
3	B23-ESC-101	Programming for Problem Solving	II	3	0	2	4
4	B23-ESC-107	Manufacturing Practices Workshop	II	0	0	3	1.5
Total Credits						13.5	

PROGRAM CORE COURSES [ECO]

S.	Course No./	Subject	Semester	Hrs/Week	Credits	
No.	Code			L:T:P		
1	B23-ECO-201	Analog and Digital Electronics	III	3:0:2	4	
2	B23-ECO-203	Computer Organization and Architecture	III	3:0:0	3	
3	B23-ECO-205	Data Structure and Algorithms	III	3:0:2	4	
4	B23-ECO-207	Electrical Machine-I	III	3:0:2	4	
5	B23-ECO-209	Electric Power Generation	III	3:0:0	3	
6	B23-ECO-202	Electrical Measurement and	IV	3:0:2	4	
		Instrumentation				
7	B23-ECO-204	Electrical Machine-II	IV	3:0:2	4	
8	B23-ECO-206	Network Analysis and Synthesis	IV	4:0:0	4	
9	B23-ECO-208	Object Oriented Programming	IV	3:0:2	4	
10	B23-ECO-301	Control System	V	3:0:2	4	
11	B23-ECO-303	Data Base Management System	V	3:0:2	4	
12	B23-ECO-305	Electromagnetic Theory	V	3:0:0	3	
13	B23-ECO-307	Operating System	V	3:0:0	3	
14	B23-ECO-309	Power System-I	V	3:0:2	4	
15	B23-ECO-302	Renewable Energy Resources	VI	3:0:0	3	
16	B23-ECO-304	Power System-II	VI	3:0:2	4	
17	B23-ECO-306	Python Programming	VI	3:0:2	4	
18	B23-ECO-308	Signals and Systems	VI	3:0:2	4	
19	B23-ECO-401	AIML	VII	3:0:2	4	
20	B23-ECO-403	Big Data Analytics	VII	3:0:2	4	
21	B23-ECO-405	Power System Protection and Relaying	VII	3:0:0	3	
Total						

.....

SKILL ENHANCEMENT-BASED PROJECT WORK, SEMINAR AND INTERNSHIP

S.	Course No./ Code	Subject	Semester	Hrs/Week	Credits		
No.				L:T:P			
1	B23-ECO-316	Project-1	VI	0:0:4	2		
2	B23-ECO-411	Project-II	VII	0:0:6	3		
3	B23-ECO-402	Project-III / Internship/	VIII	0:0:24	10		
		Startups/ Research Lab					
4	B23-ECO-317	Industrial Training-I	V	0:0:2	1		
5	B23-ECO-413	Industrial Training-II	VII	0:0:2	1		
	Total						

S.	Course No./ Code	Subject	Semester	Hrs/Week	Credits
No.				L:T:P	
1	B23-EEP-302	Power Electronics and Drives	VI	3:0:0	3
2	B23-EEP-304	Transducer and Sensors	VI	3:0:0	3
3	B23-EEP-306	Soft Computing	VI	3:0:0	3
4	B23-EEP-308	Software Engineering	VI	3:0:0	3
5	B23-EEP-310	High Voltage Engineering and Facts Devices	VI	3:0:0	3
6	B23-EEP-312	Computer Added Power System Analysis	VI	3:0:0	3
7	B23-EEP-314	Internet Technology and Management	VI	3:0:0	3
8	B23-EEP-316	Computer Network	VI	3:0:0	3
9	B23-EEP-401	Digital Signal Processing	VII	3:0:0	3
10	B23-EEP-403	Microprocessor and Microcontroller	VII	3:0:0	3
11	B23-EEP-405	Industrial Automation	VII	3:0:0	3
12	B23-EEP-407	Software Verification, Validation and Testing	VII	3:0:0	3
13	B23-EEP-402	Electric Vehicle Technology	VIII	3:0:0	3
14	B23-EEP-404	Power System Restructuring and Deregulation	VIII	3:0:0	3
15	B23-EEP-406	Robotics and Automation	VIII	3:0:0	3
16	B23-EEP-408	Block Chain Technology	VIII	3:0:0	3
17	B23-EEP-410	Energy Audit and Conservation	VIII	3:0:0	3
18	B23-EEP-412	Smart Grid	VIII	3:0:0	3
19	B23-EEP-414	Data Mining	VIII	3:0:0	3
20	B23-EEP-416	Mobile App Development	VIII	3:0:0	3

LIST OF PROGRAMME ELECTIVE COURSES [EEP]

LIST OF OPEN ELECTIVE COURSES [EEO]

S.	Course No./ Code	Subject	Semester	Hrs/Week	Credits
No.				L:T:P	
1	B23-EEO-401	Biomedical Signal Processing	VII	3:0:0	3
2	B23-EEO-403	International and Corporate Law	VII	3:0:0	3
3	B23-EEO-405	Internet of Things	VII	3:0:0	3
4	B23-EEO-407	Digital Image Processing	VII	3:0:0	3

VALUE ADDED AND MANDATORY COURSES [VAC/MAC]

S.	Course No./ Code	Subject	Semester	Hrs/Week	Credits
No.				L:T:P	
1	B23-VAC-101	Personality Development and Soft Skills	II	2:0:0	1
2	B23-VAC-110	IDEA Workshop	Ι	2:0:0	1
3	B23-VAC-112	IDEA Project Workshop	Ι	0:0:2	1
4	B23-VAC-	Hindi Language Skills/ Sanskrit Language	V	2:0:0	1
	302/304/306/308/	Skills/ German Language Skills/ Japanese			
	310	Language Skills/ French Language Skills			
5	B23-VAC-	NCC/NSS/Sports/ Yoga/ Technical or	VII	0:0:2	1
	401/403/405/407/40	Cultural Club/Society activities			
	9/411				
6	B23-MAC-201	Environmental Studies	IV	3:0:0	1
7	B23-MAC-202	Essence of Indian Traditional Knowledge	III	2:0:0	1
8	B23-MAC-301	Constitution of India	VI	2:0:0	1
		Total			8

SEMESTER WISE STRUCTURE

SEMESTER-III

(w.e.f. 2024-25)

S.	Course No./	Subject	L:T:P	Hours/		Exami		Duration		
No.	Code	Subject	bject Week Credits End Semester Internal		Internal	Practical	Total	of exam		
						Exam	Assessment	Exam		(Hours)
1	B23-ECO-201	Analog and Digital Electronics	3:0:0	3	3	70	30		100	3
2	B23- ECO -203	Computer Organization and Architecture	3:0:0	3	3	70	30		100	3
3	B23-ECO-205	Data Structure and Algorithms	3:0:0	3	3	70	30		100	3
4	B23-ECO-207	Electrical Machine-I	3:0:0	3	3	70	30		100	3
5	B23-ECO-209	Electric Power Generation	3:0:0	3	3	70	30		100	3
6	B23-HSM-201	Organizational Behaviour	3:0:0	3	3	70	30		100	3
7	B23-ECO-211	Analog and Digital Electronics Lab	0:0:2	2	1		40	60	100	3
8	B23-ECO-213	Data Structure and Algorithms Lab	0:0:2	2	1		40	60	100	3
9	B23-ECO-215	Electrical Machine Lab-I	0:0:2	2	1		40	60	100	3
10	B23-MAC-202	Essence of Indian Traditional Knowledge	2:0:0	2	1		100		100	3
	1		26	22	420	400	180	1000		

Note:

NCC/NSS/Sports/Yoga/Technical or Cultural Club/society activities will be joined by students in the second year also and will be evaluated in the 7th semester by the institute based upon a continuous evaluation model as per guidelines.

SEMESTER-IV

(w.e.f. 2024-25)

S.	Course No./	Subject	L:T:P	Hours/ Wook	Credits	Exam	ination Sched	lule (Marks)		Duration of Exam
INO.	Code			VV CCK		End Semester Exam	Internal Assessment	Practical Exam	Total	(Hours)
1	B23-BSC-203	Mathematics-III	3:1:0	4	4	70	30		100	3
2	2 B23-ECO-202 Electrical Measurement a Instrumentation		3:0:0	3	3	70	30		100	3
3	B23-ECO-204	4 Electrical Machine-II 3:0:0 3 3 70 30 1					100	3		
4	B23-ECO-206	Network Analysis and Synthesis	4:0:0	4	4	70	30		100	4
6	B23-ECO-208	Object Oriented Programming	3:0:0	3	3	70	30		100	3
7	B23-HSM-302	Intellectual Property Rights (IPR) and Regulatory	3:0:0	3	3	70	30		100	3
8	B23-ECO-210	Electrical Measurement and Instrumentation Lab	0:0:2	2	1		40	60	100	3
9	B23-ECO-212	Electrical Machine Lab-II	0:0:2	2	1		40	60	100	3
10	B23-ECO-214	Object Oriented Programming Lab	0:0:2	2	1		40	60	100	3
11	B23-MAC-201	Environmental Studies	3:0:0	3	1	70	30		100	3
		TOTAL		29	24	490	330	180	1000	

Note:

> All students have to undertake the industrial training for 4 to 6 weeks after the 4th semester, which will be evaluated in the 5th semester.

SEMESTER-V

(w.e.f. 2025-26)

S.	Course No./	Subject	L:T:P	Hours/		Exam	ination Sched	ule (Marks)		Duration
No.	Code			WEEK	Credits	End Semester Exam	Internal Assessment	Practical Exam	Total	(Hours)
1	B23-ECO-301	Control System	3:0:0	3	3	70	30		100	3
2	B23-ECO-303	Data Base Management System	3:0:0	3	3	70	30		100	3
3	B23-ECO-305	Electromagnetic Theory	3:0:0	3	3	70	30		100	3
4	B23-ECO-307	Operating System	3:0:0	3	3	70	30		100	3
5	B23-ECO-309	Power System-I	3:0:0	3	3	70	30		100	3
6	B23-HSM-202	Innovation, Startups and	3:0:0	3	3	70	30		100	3
		Entrepreneurship				70	30			
7	B23-ECO-311	Control System Lab	0:0:2	2	1		40	60	100	3
8	B23-ECO-313	DBMS Lab	0:0:2	2	1		40	60	100	3
9	B23-ECO-315	Power System-I lab	0:0:2	2	1		40	60	100	3
10	B23-ECO-317	Industrial Training-I	0:0:2	2	1		100		100	3
11	B23-VAC-	Hindi Language Skills/ Sanskrit	2:0:0	2	1		100		100	3
	302/304/306/308/	Language Skills/ German								
	310	Language Skills/ Japanese								
		Language Skills/ French								
Language Skills										
		28	23	420	500	180	1100			

(w.e.f. 2025-26)

S. No	Course No./	Subject	L:T:P	Hours/	Credits	Exa	mination Sche	edule (Marks)	Duration of Exam
	cout			Week		End Semester Exam	Internal Assessment	Practical Exam	Total	(Hours)
1	B23-ECO-302	Renewable Energy Resources	3:0:0	3	3	70	30		100	3
2	B23-ECO-304	Power System-II	3:0:0	3	3	70	30		100	3
3	B23-ECO-306	Python Programming	3:0:0	3	3	70	30		100	3
4	B23-ECO-308	Signals and Systems	3:0:0	3	3	70	30		100	3
5		Program Elective-I	3:0:0	3	3	70	30		100	3
6		Program Elective-II	3:0:0	3	3	70	30		100	3
7	B23-ECO-310	Power System-II Lab	0:0:2	2	1		40	60	100	3
8	B23-ECO-312	Python Programming Lab	0:0:2	2	1		40	60	100	3
9	B23-ECO-314	Signals and Systems Lab	0:0:2	2	1		40	60	100	3
10	B23-ECO-316	Project-I	0:0:4	4	2		100		100	3
11	B23-MAC-301	Constitution of India	2:0:0	2	1		100		100	3
		TOTAL		30	24	420	500	180	1100	

Note:

The course of both Program Elective and Open Elective will be offered at 1/3rd strength or 20 students (which ever is smaller) of the section.
All students have to undertake the industrial training for 6 to 8 weeks after the 6th semester, which will be evaluated in the 7th semester.

	Program Elective-I		Program Elective-II
B23-EEP-302	Power Electronics and Drives	B23-EEP-310	High Voltage Engineering and Facts Devices
B23-EEP-304	Transducer and Sensors	B23-EEP-312	Computer Added Power System Analysis
B23-EEP-306	Soft Computing	B23-EEP-314	Internet Technology and Management
B23-EEP-308	Software Engineering	B23-EEP-316	Computer Network

0 000 (05)

S.	Course No./	Subject	L:T:P	Hours	Creadita	Exan	nination Sche	dule (Mark	s)	Duration
190.	Code			/ Week		End Semester	Internal Assessment	Practical Exam	Total	(Hours)
1	B23-ECO-401	AIML	3:0:0	3	3	70	30		100	3
2	B23-ECO-403	Big Data Analytics	3:0:0	3	3	70	30		100	3
3	B23-ECO-405	Power System Protection and Relaying	3:0:0	3	3	70	30		100	3
4		Program Elective-III	3:0:0	3	3	70	30		100	3
5		Open Elective-I	3:0:0	3	3	70	30		100	3
6	B23-ECO-407	Data Analytics Lab	0:0:2	2	1		40	60	100	3
7	B23-ECO-409	AIML Lab	0:0:2	2	1		40	60	100	3
8	B23-ECO-411	Project-II	0:0:6	6	3		40	60	100	3
9	B23-ECO-413	Industrial Training-II	0:0:2	2	1		100		100	3
10	B23-VAC-	NCC/NSS/Sports/ Yoga/ Technical or Cultural	0:0:2	2	1		100		100	
	401/403/405/407/	Club/Society activities								
	409/411									
		TOTAL		29	22	350	470	180	1000	

Note:

> The course of both Program Elective and Open Elective will be offered at $1/3^{rd}$ strength or 20 students (whichever is smaller) of the section.

B23-VAC-401/403/405/407/409/411 are single credit value added courses in which NCC/NSS/Sports/Yoga/Technical or Cultural Club/Society activities will be joined by students in first year and will be evaluated in 7th semester by the institute based upon continuous evaluation model as per guidelines.

	Program Elective-III		Open Elective-I
B23-EEP-401	Digital Signal Processing	B23-EEO-401	Biomedical Signal Processing
B23-EEP-403	Microprocessor and Microcontroller	B23-EEO-403	International and Corporate Law
B23-EEP-405	Industrial Automation	B23-EEO-405	Internet of Things
B23-EEP-407	Software Verification, Validation and Testing	B23-EEO-407	Digital Image Processing

SEMESTER-VIII

(w.e.f. 2026-27)

S.	Course No./Code	Subject	L:T:P	Hours	Credits	Exa	mination Sche	dule (Marks	5)	Duration
No.		Subject		/		End	Internal	Practical	Total	of Exam
				Week		Semester	Assessment	Exam		(Hours)
				··· cen		Exam				(Hours)
1		Program Elective-IV	3:0:0	3	3	70	30		100	3
2		Program Elective-V	3:0:0	3	3	70	30		100	3
3	B23-ECO-402	Project-III / Internship/	0:0:20	20	10		200	200	400	3
		Startups/ Research Lab								
	Τ	OTAL		26	16	140	260	200	600	

Note:

> The course of both Program Elective and Open Elective will be offered at $1/3^{rd}$ strength or 20 students (whichever is smaller) of the section.

In case of semester-long project work done in industry/external institute, the Program Elective- IV and Open Elective-IV may be offered in online mode through MOOC courses offered by SWAYAM/NPTEL portal. These courses may be done from 3rd semester till completion of the degree.

	Program Elective -IV	P	rogram Elective -V
B23-EEP-402	Electric Vehicle Technology	B23-EEP-410	Energy Audit and Conservation
B23-EEP-404	Power System Restructuring and Deregulation	B23-EEP-412	Smart Grid
B23-EEP-406	Robotics and Automation	B23-EEP-414	Data Mining
B23-EEP-408	Block Chain Technology	B23-EEP-416	Mobile App Development

Students of Electrical and Computer Engineering are offered to earn **ADDITIONAL 18-20 CREDITS** through MOOCs/SWAYAM courses as per the 'Guidelines to implement the SWAYAM/MOOCs/ other authorized online courses (OAOC) of Kurukshetra University, Kurukshetra' in any of the emerging areas mentioned below for the award of the degree of:

- 1. B.Tech. (Hons.) Electrical and Computer Engineering with Specialization in Electric Vehicles
- 2. B.Tech. (Hons.) Electrical and Computer Engineering with Specialization in Energy Engineering
- B.Tech. (Hons.) Electrical and Computer Engineering with Specialization in Artificial Intelligence and Machine Learning
- 4. B.Tech. (Hons.) Electrical and Computer Engineering with Specialization in Data Science
- 5. B.Tech. Electrical and Computer Engineering with a Minor Degree in Mechatronics
- 6. B.Tech. Electrical and Computer Engineering with a Minor Degree in VLSI Design
- 7. B.Tech. Electrical and Computer Engineering with a Minor Degree in Internet of Things (IoT)
- 8. B.Tech. Electrical and Computer Engineering with a Minor Degree in Cyber Security

B23-	-ECO-201		Analog a	nd Digital Electronics						
Lecture	Tutorial	Practical	Credit	End Semester Exam	Internal Assessment	Total	Duration of Exam			
3	-	•	3	70	30	100	3Hrs.			
Purpos	e: Student	s will grasp f	undamental	concepts of analog and dig	ital electronics.					
Course	Outcomes	s (CO)								
CO1	To underst Junction di	and the con iode and tun	cept of carrie nel diode.	r transport phenomena in s	semiconductors an	d diodes su	ıch as p-n			
CO2	To unders models.	tand the deta	ailed operatio	on of BJT and the calculati	ion of its paramete	ers using tra	ansistor			
CO3	Students will be able to understand the basic logic gates and will be able to apply minimization techniques for reducing a function up to four variables.									
CO4	Students v	vill be able to	design com	binational & Sequential circ	cuits and their analy	/sis.				

UNIT-I

Charge Carriers Transport: Energy bands in intrinsic and extrinsic silicon; Carrier transport: diffusion current, drift current, mobility, and resistivity; Generation and recombination of carriers; Continuity equation, PN Junction: Basic Structure, small signal equivalent circuit of p-n diode, derivation of barrier potential and diode current equation, Simple diode circuits: clipping, clamping and rectifiers, Zener diode and its application as voltage regulator.

UNIT-II

Bipolar Junction Transistor: Basic principle of operation, Current gains: derivation of α , β , Υ and their relationship. Various modes of operation of BJT, Base Width Modulation, Transistor hybrid model, h-parameter equivalent circuit of transistor, Analysis of transistor amplifier using h-parameters, calculation of input impedance, output impedance and voltage gain.

UNIT-III

Number Systems: Decimal, binary, octal, hexadecimal number system and conversion, binary weighted codes, signed numbers, 1s and 2s complement codes, Binary arithmetic

Boolean Algebra: Binary logic functions, Boolean laws, truth tables, associative and distributive properties, De-Morgans theorems, realization of switching functions using logic gates.

UNIT – IV

Combinational Logic: Switching equations, canonical logic forms, sum of product & amp; product of sums, Karnaugh maps, two, three and four variable K-maps, simplification of expressions.

Analysis & design of Combinational Logic: Introduction to combinational circuits, Adder and Subtractor circuits (half & amp; full adder & amp; subtractor, Encoder, Decoder, Comparator, Multiplexer, De-Multiplexer and Parity Generator

Sequential circuits: A 1-bit memory, clocked SR flip flop, J- K, T and D types flip flops **Text Books:**

1. Millman & amp; Halkias: Integrated Electronics, TMH.

2. Boylestad & Nashelsky: Electronic Devices & amp; Circuit Theory, PHI.

3. M. M. Mano, & quot; Digital design & quot;, Pearson Education India, 2016.

4. Donald P. Leach and Albert Paul Malvino, Digital Principles and Applications, 8th Edition, TMH, 2003 **Reference Books**:

1. B.G. Streetman, Solid State Electronic Devices, Prentice Hall of India, New Delhi, 1995.

2. E S. Yang, Microelectronic Devices, McGraw Hill, Singapore, 1988.

3. S. Salivahanan and Naresh Kumar, Electronics devices and circuits, McGraw Hill, 1998.

B23	3-ECO-203	Computer Organization and Architecture										
Lecture	e Tutorial	Practical	Credit	End Semester Exam	Internal Assessment	Total	Duration of Exam					
3	-	-	3	70	30	100	3Hrs.					
Purpose	Purpose: Students will grasp fundamental computer architecture concepts and learn essential skills for building											
cost-eff	ective comp	uter systems.										
Cours	e Outcomes	(CO)										
CO1	Be familia	r with the intern	al organization	and operations of a comp	outer.							
CO2	Be familia	r with the desigr	n tradeoffs in de	signing and constructing	a computer proc	essor.						
CO3	CO3 Be aware of the CPU design, including the RISC/CISC architectures.											
CO4	Be acquainted with the basic knowledge of I/O devices and select the appropriate interfacing standards for I/O devices.											

UNIT- I

Data representation and Computer arithmetic: Introduction to Computer Systems, Organization and architecture, Von Neumann Architecture, evolution and computer generations.

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary Memory, Associative Memory, Cache Memory, Virtual Memory.

UNIT-II

Basic Computer organization and Design: Instruction codes, computer registers and common bus system, computer instructions, timing and control, instruction cycle: Fetch and Decode, Register reference instructions; Memory reference instructions. Input, output and Interrupt: Instructions, Program interrupt, Interrupt cycle, Control Memory, address sequencing, Micro program Example, micro instruction format, Horizontal Vs Vertical micro-programming, design of control Unit, microprogram sequencer, Hardwired v/s Micro-programmed Control.

UNIT-III

Central Processing Unit: General register organization, stack organization, instruction formats (Zero, One, Two and Three Address Instruction), addressing modes.

CISC and RISC: features and comparison. Pipeline and vector Processing, Parallel Processing, Flynn's taxonomy, Pipelining, Instruction Pipeline, Basics of vector processing and Array Processors.

UNIT-IV

Input-output organization: I/O interface. I/O Bus and interface modules, I/O versus Memory Bus. Asynchronous data transfer: Strobe control, Handshaking, Asynchronous serial transfer. Modes of Transfer: Programmed I/O, Interrupt-driven I/O. Direct memory Access, DMA controller and transfer.

Suggested Books:

- 1. William Stallings, "Computer Organization and Architecture Designing for Performance", Sixth
- 2. Edition, Pearson Education, 2003.
- 3. Morris Mano, M., "Computer System Architecture," 3/e, Pearson Education, 2005.
- 4. John P. Hayes, "Computer Architecture and Organization," 3/e, TMH, 1998.
- 5. David A. Patterson and John L. Hennessy, "Computer Organization and Design: The
- 6. Hardware/Software interface", Third Edition, Elsevier, 2005.
- 7. V.P. Heuring, H.F. Jordan, "Computer Systems Design and Architecture", Second Edition, Pearson
- 8. Education, 2004.
- 9. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", Fifth Edition, Tata
- 10. McGraw Hill, 2002

B23-E	CO-205	Dat	Data Structure and Algorithms														
Lecture	Tutorial	Practical	Credit	End Semester Exam	Total	Duration of Exam											
3	3 3 70 30 100 3 Hrs																
Purpose: T	Purpose: To introduce Data Structure principles for software system design and implementation																
Course Ou	tcomes																
CO 1	To elaborate	elementary data	a organization	is and identify diffe	rent data structu	re opera	tions such as										
	insertion, del	etion, and traver	sal.														
CO 2	To examine v	arious operatior	ns of Stack and	d Queue.													
CO 3	O 3 To identify the role of link lists in data structure and discuss various types of linked lists.																
CO 4	To explore Te	erminologies of t	rees and grap	hs.			Fo explore Terminologies of trees and graphs.										

UNIT-I

Introduction: Basic Terminologies: Elementary Data Organizations, Data Structure Operations: Insertion, Deletion, Traversal, etc. Analysis of an Algorithm, Asymptotic Notations, and Time-Space Trade-Off. Searching: Linear Search and Binary Search Techniques and Their Complexity Analysis.

Sorting: Objectives and properties of different sorting algorithms: selection sort, bubble sort, insertion sort, quick Sort, and merge sort.

UNIT-II

Stacks and Queues: Describes the stack and its operations. Queue, Types of Queues: Simple queue, circular queue, priority queue; operations on each type of queue.

UNIT-III

Linked Lists: Linked lists and their types: Representation in memory: algorithms of several operations: traversing, searching, insertion, and deletion.

UNIT-IV

Trees: Basic Tree Terminologies, Different Types of Trees: Binary Tree, Binary Search Tree, and AVL Tree: tree operations on each of the trees.

Graph: Basic Terminologies and Representations, Graph Search, and Traversal.

TEXTBOOKS:

1. Fundamentals of Data Structures, Illustrated Edition by Ellis Horowitz, Sartaj Sahni, Computer Science Press.

2. Data Structures, Revised 1st Edition by Seymour Lipschutz, Scaum's Outline Series McGraw Hill

REFERENCE BOOKS:

1. Algorithms, Data Structures, and Problem Solving with C++", Illustrated Edition by Mark Allen Weiss, Addison Wesley Publishing Company

2. How to Solve it by Computer, 2nd Impression by R. G. Dromey, Pearson Education.

B23-ECO-207			Electric	al Machine-I			
Lecture	Tutorial	Practical	Credit	End Semester Exam	Internal Assessment	Total	Duration of Exam
3	-	-	3	70	30	100	3 Hrs.
Purpose: To familia	arize the stud	dents with elect	ric machines	and transformers.	1 1		
Course Outcomes							
CO1	To unders	tand the conce	pt, working, c	peration, and main	itenance of single	-phase tran	sformer
CO 2	To unders	tand the conce	ept, working,	operation, mainten	ance of the phase	e transform	er & conversion
	from three	-phase to multi	ple phases				
CO 3	To unders	tand the constr	ruction, worki	ng, and operation o	f D.C. Generator		
CO 4	To unders	tand the conce	pt, working, c	peration, and testir	ng of D.C. Motor		

UNIT – I

TRANSFORMERS: Principle, construction of core, EMF equation, winding & tank, cooling, operation, testing of single-phase transformer, equivalent circuit, phasor diagram, parameters determination, P.U representation of parameters, regulation, losses & efficiency, separation of iron losses, parallel operation, all-day efficiency, Sumpner's test, specifications of transformer, maintenance of transformer, difference between power transformer and distribution transformer.

UNIT – II

Three phase transformers: Types and their comparative features.

Auto-Transformer: Principle, construction, comparison with two winding transformers, applications.

Nature of magnetizing current: plotting of magnetizing current from B-H curve, Inrush current.

Phase-Conversion: Three to two phases, three to six phases, and three to twelve phases of conversions. Introduction to three windings transformer, tap-changing & phase-shifting transformers.

UNIT – III

D.C. Generator- Principle & construction of D.C. generator, simplex lap, wave winding, E.M.F. equation, types, voltage build-up, armature reaction, compensating winding, the function of the commutator, methods of improving commutation, load characteristics, parallel operation.

UNIT- IV

D.C. Motor- Principle of DC motors, function of commutator in DC motors, torque and output power equations, load characteristics, losses, starting, starters, speed control, braking, testing, Swinburne test, Hopkinson test, Ward Leonard Method, efficiency & applications.

Suggested Books:

1. A. E. Fitzgerald and C. Kingsley, "Electric Machinery", New York, McGraw Hill Education, 2013.

2. A. E. Clayton and N. N. Hancock, "Performance and design of DC machines", CBS Publishers, 2004.

3. M. G. Say, "Performance and design of AC machines", CBS Publishers, 2002.

4. P. S. Bimbhra, "Electrical Machinery", Khanna Publishers, 2011.

5. I. J. Nagrath and D. P. Kothari, "Electric Machines", McGraw Hill Education, 2010.

B23-E	CO-209	Elec	trical Powe	r Generation			
Lecture	Tutorial	Practical	Credit	End Semester Exam	Internal Assessment	Total	Duration of Exam
3	-	-	3	70	30	100	3 Hrs.
Purpose: S plants. Course Ou	Students will t	familiarize with	power plar	nts economics, cost f	factors, and overv	iew of conv	ventional power
CO 1	To study, Lo used in powe	ad and loading er generation	g forecasting	g, Power plant econo	mics, Tariffs and p	oower facto	or improvement
CO 2	To understa	nd tariffs, impo	rtance of po	ower factor and worki	ing of Thermal pow	ver plants.	
CO 3	To understa	nd working of 7	Thermal pov	ver plants.	· · · ·		
CO 4	To understa hydel plants.	nd working of I	Nuclear pov	ver plants, Diesel pov	wer plants & Comb	oined worki	ng of thermal &

UNIT-I

Load and Load Forecasting: Load curves, maximum demand, load factor, diversity factor, capacity factor, utilization factor, types of load, load forecasting, base load and peak load.

Power Plant Economics: Choice of type of generation, size of generator and number of units, cost of electrical energy, depreciation of plant, effect of load factor on cost of Electrical Energy.

UNIT-II

Tariffs and Power Factor Improvement: Different types of tariffs and methods of power factor improvement. **Hydro power plants:** Choice of site, classification of hydro electric plants, main parts and working of plants and their layouts, characteristics of hydro electric generators. Speed governing—Purpose, hydraulic type governor functioning

UNIT-III

Thermal Power Plants: Working of power plants and their layout, Main parts and working of stationsthermodynamic cycles, fuel handling, combustion and combustion equipment, problem of ash disposal, circulating water schemes and supply of makeup water, economizer, air pre-heater feed water heaters and dust collection.

UNIT-IV

Nuclear power plants: Choice of site, classification of plants, main parts, layout and their working, associated problems. Diesel Power Plants: Diesel plant equipments, diesel plant layout and their working, application of diesel plants.

Combined working of plants: Advantages of combined operation plant requirements of base load and peak load operation. Combined working of run-off river plant and steam plant.

REFERENCES:

1. C.L. Wadhwa, -Electric Power SystemII (Willey Eastern Ltd).

2. I. J. Nagnath and D.P. Kothari – Power System Engineering II TMGH.

- 3. Power Genreation by B.R Gupta, S.Chand.
- 4. Power System Engg. By R.K Rajput, Luxmi Publication.

B23-HSM-2	201			Organizational B	ehavior		
Lectur	e Tutorial	Tutorial Practical Credit End Semester Internal Exam Assessment					Duration of Exam
3	0	-	3	70	30	100	3 Hrs.
Purpose: T nurture mar	he objective of this on nagerial skills.	course is to he	lp students	s converse with the	basic concepts of org	ganization	al behaviour to
Course Out	tcomes						
CO1	An overview of or behaviour.	rganizational b	ehaviour a	as a discipline and u	nderstanding the con	cept of inc	lividual
CO2	Understand the co and effective leade	oncept and imp ership.	ortance of	personality and emo	otions and their impor	tance in d	ecision-making
CO3	Enabling the stud dynamics and reso	ents to know a olving conflicts	bout the in	nportance of effectiv	re motivation and its o	contributio	n in group
CO4	Understand how to effective communi	o overcome or cation.	ganizationa	al stress by maintair	ning proper organizati	onal cultu	re and

UNIT- I

Introduction to organizational behavior: Concept and importance of organizational behavior, role of Managers in OB, challenges and opportunities for OB.

Foundation of individual behavior: Biographical characteristics, concept and types of abilities, concept of values and attitude, types of attitude, attitude and workforce diversity.

UNIT- II

Introduction to personality and emotions: Definition and Meaning of Personality, Determinants of Personality, Personality Traits Influencing OB, Nature and Meaning of Emotions, Emotions dimensions, concept of Emotional intelligence.

Perception and individual decision making: meaning of perception, factors influencing perception, rational decisionmaking process, the concept of bounded rationality. Leadership-trait approaches, behavioural approaches, situational approaches, and emerging approaches to leadership.

UNIT-III

Motivation: Concept and theories of motivation, theories of motivation-Maslow, two-factor theory, theory X and Y, ERG Theory, McClelland's theory of needs, goal setting theory, application of theories in the organizational scenario, the linkage between MBO and goal setting theory.

Foundations of group behaviour and conflict management: Defining and classifying of groups, stages of group development, Informal and formal groups- group dynamics, managing conflict and negotiation, causes of group conflicts, managing intergroup conflict through resolution.

UNIT-IV

Introduction to Organizational Communication: Meaning and importance of communication process, importance of effective communication, organizational stress: definition and meaning sources and types of stress, impact of stress on organizations, stress management techniques.

Introduction to Organization Culture: Meaning and nature of organization culture, types of culture, managing cultural diversity, managing change and innovation-change at work, resistance to change, a model for managing organizational change.

Text Books:

1. Colquitt, Jason A., Jeffery A. LePine, and Michael Wesson. Organizational Behavior: Improving Performance and Commitment in the Workplace. 5th ed. New York: McGraw-Hill Education, 2017.

2. Hitt, Michael A., Miller, and Adrienne Colella. Organizational Behavior. 4th ed. Hoboken, NJ: John Wiley, 2015.

3. Robbins, Stephen P., and Judge. Organizational Behavior. 17th ed. Harlow, UK: Pearson Education, 2017.

Reference Books:

1. Schermerhorn, Hunt and Osborn, Organisational behavior, John Wiley.

2. Udai Pareek, Understanding Organisational Behaviour, Oxford Higher Education.

3. Mc Shane & Von Glinov, Organisational Behaviour, Tata Mc Graw Hill.

4. Aswathappa, K., Organisational Behaviour- Text and Problem, Himalaya Publication.

B23-E	CO-211	Analog and Digital Electronics Lab										
Lecture		Tutorial	Practical	Credit	Practical Exam	Internal Assessment	Total	Duration of Exam				
•	- 2 1 60 40							3 Hrs.				
Purpos	se: The stud	ents will fam	niliarize them	selves with o	ligital and analog	ue devices.						
Course	e Outcomes	(CO)										
CO1	To teach t	he students	how to expe	rimentally plo	ot the VI characte	ristics of various di	odes such	i as p-n				
	diode, Zer	er diode etc	c. find the thre	eshold voltag	ge and Zener brea	akdown voltage fro	m the VI c	urve.				
CO2	To teach voltage g	the students ain, current	s how to expe gain etc.	erimentally fi	nd the values of v	various parameters	of Transis	stor such as				
CO3	To verify	truth tables	of basic logic	gates and c	lesign various gat	tes using universal	gates.					
CO4	To design	To design various Combinational & Sequential circuits and verify their operation										

List of Experiments

- 1 To study the VI characteristics of p-n diode in forward and reverse bias and find the threshold voltage from the VI curve.
- 2 To study the operation of Zener diode as a voltage regulator.
- 3 To study the operation of half-wave and full wave rectifiers and calculate their ripple factor values.
- 4 To study the operation of series and parallel Clippers using P-N junction diodes.
- 5 To study the operation of clampers using P-N junction diodes.
- 6 To experimentally plot the input and output characteristics of a given BJT transistor in CE configuration and calculate its various parameters.
- 7 To experimentally Plot the input and output characteristics of a given BJT transistor in CB configuration and calculate its various parameters.
- 8 Familiarization with Digital Trainer Kit and associated equipment.
- 9 Study of TTL gates AND, OR, NOT, NAND, NOR, EX-OR, EX-NOR.
- 10 Design and realize a given function using K-Maps and verify its performance.
- 11 To verify the operation of Multiplexer and De-multiplexer.
- 12 To verify the operation of Comparator.
- 13 To verify the truth table of S-R, J-K, T, D Flip-flops.

Note: At least eight (8) experiments from the above list are mandatory to perform for the students.

B23-E 213	CO-	Data Structure and Algorithms Lab									
Lectu	ure Tutorial	Practical	Credit	Practical Exam	Internal Assessment	Total	Duration of Exam				
	•	100	3 Hrs.								
Purpos	se: To Introduce	Data Structures	principles a	nd paradigms fo	or designing and im	plementing	software.				
Course	e Outcomes (CO)									
CO1	To introduce the array data type	ne basic concept es.	s of Data str	ucture, basic da	ata types, searching	g and sorting	g based on				
CO2	To introduce	he structured da	ita types like	Stacks and Qu	eue and its basic o	peration's ir	nplementation.				
CO3	To introduce	mplementation of	of linked list.								
CO4	To introduce the	e concepts of T	ree.								

List of Experiments

- 1. Write a program to implement array operations.
- 2. Write a program to implement memory allocation and de-allocation in array.
- 3. Write a program for search methods.
- 4. Write a program for insertion sort
- 5. Write a program for selection sort
- 6. Write a program for bubble sort.
- 7. Write a program to implement Stack and its operation.
- 8. Write a program to implement Queue and its operation.
- 9. Write a program to implement singly linked list for the following operations: Create, Display, searching, traversing and deletion.
- 10. Write a program to implement insertion, deletion and traversing in B tree.

Note: At least eight (8) experiments from the above list are mandatory to perform for the students.

B23-ECO-215			Electric	al Machines Lab-I								
Lecture	Tutorial	utorial Practical Credit Practical Exam Internal Total Duration Assessment Exam										
-	-	- 2 1 60 40 100 3 Hrs.										
Purpose: The students will do various experiments on the Transformer and DC machine.												
Course Outcome	es (CO)											
C01	To teach t phase trar	he students nsformer.	how to ex	perimentally find va	rious parameters	and losse	s of the single-					
CO2	Experimental analysis of parallel operation and Scott connection.											
CO3	To perform various tests on DC machines to analyse various parameters.											
CO4	To analyz	e various cha	aracteristic	cs of DC machines a	and transformers.							

- 1. To find turns ratio, polarity & mark dot convention of a 1-phase transformer.
- 2. To perform open & short circuit tests on a 1-phase transformer& find parameters.
- 3. To perform Sumpner's Back-to-Back test on 1-phase transformer& find parameters.
- 4. Parallel operation of two 1-phase transformers and observe load sharing.
- 5. To convert three phase supply to 2-phase by Scott-connection, compare line Currents theoretically & practically for unbalanced load.
- 6. To perform load test on DC shunt generator & find efficiency& observe speed at Different load.
- 7. Speed control of DC shunt motor by armature & field control method, draw graph Between speed & field current.
- 8. To perform Swinburne's test of DC shunts motor and find efficiency.
- 9. To perform Hopkinson's test of DC shunts M/Cs.
- 10. To perform Ward Leonard method for speed control DC shunts motor.
- 11. To make various types of three phase connections, using three single phase Transformers, study relevant features
- 12. Characteristics for compound, series shunt generators.

Note: At least eight experiments should be performed from above list.

B23-M	AC-202	Essence of	of Indian Trad	itional Kno	owledge			
Lectur	re	Tutorial	Practical	End Semester Exam	Total	Duration of Exam		
2		-	•	1	100	-	100	3 Hrs.
Purpos	se: To facilita	te the studer	nts with the co	ncepts of Ir	ndian traditional kr	nowledge and to mak	e them und	derstand the
importa	ance of the ro	oots of the kr	nowledge syste	em, analyz	e and apply to the	ir day-to-day life.		
Course	e Outcomes							
CO1	The studen	ts will be abl	e to understar	nd, connect	and explain the b	pasics of Indian tradition	onal knowl	ledge from a
CO2	I he studen	ts will be abl	e to understar	nd Holistic F	Health using the Ir	ndian Knowledge Sys	tem.	
CO3	The studen control.	ts will be abl	e to Manage t	heir though	ts and Emotions a	and will learn positivit	y, self-regu	ulation, and
CO4	The studen	ts will be abl	e to Achieve C	Consciousn	ess through India	n Knowledge System.	i i i i i i i i i i i i i i i i i i i	

UNIT 1

Introduction to Indian Traditional knowledge: Define traditional knowledge, importance, kinds of traditional knowledge. Philosophical systems, Basics of Rajyoga and Karam yoga, Benefits of Rajyoga and Karamyoga.

UNIT 2

Holistic Health using Indian Knowledge System: Basic principles of natural life style, Benefits through five elements. Healing through food, Chakras and Mudras. Physical, Mental, Emotional and Spiritual health using traditional knowledge.

UNIT 3

Positivity: Traditional approaches. Happiness: objective and subjective measures of wellbeing, life satisfaction. Resilience, Self-regulation and self-control, optimism, self-esteem. Managing thoughts and Emotions with the help of Rajyoga. Achieving Powers for Self-Mastery.

UNIT 4

Achieving Consciousness through Indian Knowledge System: Emotional intelligence, Indian approach to Psychology. Consciousness; levels, body-mind relationship, self-motivation, Self and Identity in modern Psychology and Indian thought., Spirituality and well-being.

Reference and Text Books:

Mahadevan, M., Bhat, V.R. & Pavana N. (2022). Introduction to Indian Knowledge System: Concepts and Applications. PHI Learning

Baumgardner, SR & Crothers, MK (2009). Positive Psychology. Prentice Hall/Pearson Education.

Cornelissen, R.M., Misra G. & Varma S. (2014). Foundations & Applications of Indian Psychology. Pearson Education.

Rajyoga Education and Consciousness Improvement Programme for Educators, Rajyoga Education and Research Foundation.

Rajyoga Meditation Course, Thoughkart, Jaipur(Rajasthan), India.

Prakartik Swasthya Shastra, Publisher Natural Lifestyle

B23-B	SC-203				MATHEMA	TICS-III						
			[For l	Mechanic	al, (Electrical & C	omp. Engg.) stud	ents only	/]				
Lec	ture	Tutorial	Practical	Credit	Internal	End Semester	Total	Duration of Exam				
3		1	-	4	70	30	100	3 Hrs.				
Purpose	rpose: To familiarize the prospective students with Laplace Transform to solve differential equations and how to app											
the princ	ciples of p	es of probability & statistics to model and analyze various phenomena in fields like finance, economics, and										
enginee	ring, aiding	g in making ir	nformed deci	sions and	predicting outcom	es.						
Course	Outcomes											
CO1	Introduct	tion about th	e concept of	Laplace tr	ansform and how	it is useful in solvin	g definite	integrals and initial				
	value pro	oblems.										
CO 2	To intro	duce the fund	damental cor	cepts of p	robability to analy	ze and predict outc	omes in r	eal-life situations.				
CO 3	Probabil	ity theory pro	ovides model	s of proba	bility distributions	(theoretical models	of the ob	servable reality				
	involving chance effects) to be tested by statistical methods which has various engineering applications.											
CO4	To make	e the student	s familiar wit	h basic sta	atistics, including n	neasures of central	tendency	, measures of				
	dispersio	on, correlatio	n, and regre	ssion.	-		-					
	U	NIT-I				(0	8Hrs)					

UNIT-I (08Hrs) Laplace Transform: Introduction, Laplace Transform of Elementary Functions, Basic properties of Laplace transform,

(10Hrs)

UNIT-II

solving ordinary differential equations by Laplace Transform method.

Basic Probability: Introduction, additive law of probability, Conditional Probability, Independent Events, Bayes' Theorem. Random Variables: Discrete random variables, probability distribution, Probability mass function and distribution function, Expectation, Moments, Variance and standard deviation of discrete random variables.

Laplace transform of periodic functions, finding inverse Laplace transform by different methods, Convolution theorem,

UNIT-III

(10 hrs)

(12hrs)

Continuous Probability distribution: Continuous random variables, probability distribution, Probability density function and distribution function, Expectation, Moments, Variance and standard deviation of Continuous random variables. Probability distributions: Binomial, Poisson and Normal - evaluation of statistical parameters for these three distributions.

UNIT-IV

Basic Statistics: Measures of Central tendency: Mean, median, quartiles, mode, Geometric mean, Harmonic mean, Measures of dispersion: Range, Quartile deviation, mean deviation, standard deviation, coefficient of variation, Moments, Skewness and Kurtosis, Correlation, Coefficient of correlation, methods of calculations, Lines of regression.

Suggested Books:

1. Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

- 2. P. G. Hoel, S. C. Port and C. J. Stone, Introduction to Probability Theory, Universal Book Stall, 2003
- 3. S. Ross, A First Course in Probability, 6th Ed., Pearson Education India, 2002.
- 4. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 3rd Ed., Wiley, 1968.
- 5. N.P. Bali and and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2010.
- 6. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.
- 7. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
- 8. Veerarajan T., Engineering Mathematics (for semester III), Tata McGraw-Hill, New Delhi, 2010.

B23-EC	0-202		EI	ectrical M	easurement and l	Instrumentation				
Lect	ure	Tutorial	Practical	Credit	End Semester Exam	Internal Assessment	Total	Duration of Exam		
3		0	0	3	70	30	100	3 Hrs.		
Program students	rogram Objective (PO): To provide knowledge of Measurement of Electrical and Electronics Instruments to th rudents.									
Course	Outcome	es (CO)								
CO1	To und	erstand the c	oncept of units	s, errors, ar	nd measuring syste	em fundamentals	i.			
CO2	To und	To understand the concept of measuring instruments								
CO3	To und	To understand the concept of low & high resistance measurements, A.C. bridges								
CO4	To und	erstand the c	oncept of watt	meters, en	ergy meters& tran	sducers				

UNIT–I

UNITS, STANDARDS & ERRORS: S.I. units, Absolute standards (International, Primary, Secondary & Working Standards).True Value, Errors (Gross Systematic Random): Static characteristics of Instruments (Accuracy, precision, Sensitivity ,Resolution & threshold).

MEASURINGSYSTEMFUNDAMENTALS: Classification of instruments (Absolute & Secondary Instruments: indicating, recording & integrating instruments: based upon Principle of operation). Generalized instrument (Block diagram, description of blocks). Three forces in electromechanical indicating instrument (Deflecting, controlling & damping forces).

UNIT-II

MEASURING INSTRUMENTS: Construction, operating principle, Torque equation, shape of scale, use as Ammeter or as Voltmeter (Extension of Ranges). Use on AC/DC or both. Advantages & disadvantages, errors (both on AC/DC) of PMMC types, electrodynamics type, moving iron type (attraction, repulsion & combined types). Induction type, electrostatic type instruments. Introduction of Q meter, VTVM.

UNIT-III

LOW & HIGH RESISTANCE MEASUREMENTS: Wheat stone bridge; Kelvin's double bridge method, Difficulties in high resistance measurements, Measurement of high resistance by direct deflection, loss of charge method, Megaohm Bridge & meggar.

A.C. BRIDGES: General balance, Ckt. & Phasor diagram, applications, advantages/disadvantages of: Maxwell's inductance, inductance-capacitance, Hays, Anderson, Owens, De-Sauty's, and Schering & Weins Bridges. Shielding & earthling

UNIT-IV

TRANSDUCERS & THEIR APPLICATIONS: Types of Transducers, Classifications, Measurement of Displacement, pressure, force, temperature& light

WATTMETERS & ENERGY METERS: Construction, operating principle, torque equation, shape of scale, errors, Advantages & disadvantages of Electrodynamics & induction type watt meters; single phase induction type Energy meter.

REFERENCES:

A Course in Elect. & Electronics Measurement & Instrumentation by A.K. Sawhney; Khanna Pub. Electronics & Electrical Measurement & Instrumentation by J.B. Gupta, Kataria & Sons. Electronics Instrumentation & Measurement technique, W.D. Copper & A.dHelfrick. Measuring Systems by E.O. Doeblin; TMH.

B23-ECO-204		Ele	ctrical Ma	achines-II						
Lecture	Tutorial	Practical	Credit	End Semester Exam	Internal Assessment	Total	Duration of Exam			
3	-	-	3	70	30	100	3 Hrs.			
Purpose: To fami	iliarize the st	udents with th	ne basics o	of Electrical Machin	es					
Course Outcome	S									
CO1	Understan	d the concept	s of rotatir	ng magnetic fields a	and three phase I	nduction r	machine.			
CO 2	Understan	Understand the operation of single-phase induction motors.								
CO 3	To Analyze	To Analyze performance characteristics of synchronous machines.								
CO 4	To study the	ne concepts a	nd operati	on of various speci	al-purpose mach	ines.				

UNIT-I

Induction Machines:

Basic concept of Induction machines: winding factors, generated e.m.f. and m.m.f distribution, a.c. winding, rotating magnetic field.

3-phase Induction Motor: Construction, features, production of torque, phasor diagram, equivalent circuit, performance analysis, torque–slip characteristics, running, light and blocked rotor test, load test on 3-ph I.M.

UNIT-II

Starting of 3-ph I.M. Starting methods of squirrel cage and wound rotor induction motor. **Induction Generator-**Operation, applications, advantages.

Single-phase induction motors: -

Constructional features & double-revolving field theory, equivalent circuit, determination of parameters. Split phase, starting methods, types& applications.

UNIT-III

Three Phase Synchronous Generators: Principle, construction, EMF equation, armature winding, armature reaction, equivalent circuit, voltage regulation, Output power equation, power angle curve, two reactance theory, slip test, Transient and sub transient reactance, synchronization, parallel operation.

Three Phase Synchronous Motor: Construction, Principle of operation, Equivalent circuit, torque, power developed, starting, V-curve, Hunting-causes, effects & reduction, synchronous condenser applications. Comparison between induction motor and synchronous motor.

UNIT-IV

Special Purpose Motors: Universal motor, Repulsion motor, Single-phase series motor, Single-phase Synchronous motor, Stepper Motor, Linear Induction motor, Reluctance motor, Servo motor, Hysteresis motor, Brushless DC motor, Permanent Magnet DC (PMDC) motor, Schrage motor.

Suggested Books:

1. A. E. Fitzgerald and C. Kingsley, "Electric Machinery", McGraw Hill Education, 2013.

2. M. G. Say, "Performance and design of AC machines", CBS Publishers, 2002.

3. P. S. Bimbhra, "Electrical Machinery", Khanna Publishers, 2011.

4. I. J. Nagrath and D. P. Kothari, "Electric Machines", McGraw Hill Education, 2010.

5. A. S. Langsdorf, "Alternating current machines", McGraw Hill Education, 1984.

B23-ECO-206	Network Analysis and Synthesis											
Lecture	Tutorial	Itorial Practical Credit End Semester Exam Internal Total D Assessment										
4	0	0	4	70	30	100	3 Hrs.					
Purpose	To familia filters and	To familiarize the students with the concepts of topology, transient analysis, network modelling, filters and methods of network analysis and synthesis for solving simple and complex circuits.										
Course Outcon	nes											
CO1	To unders	stand the tim	e domain	analysis of first and Seco	ond-order linear ci	ircuits.						
CO2	To unders	understand the concept of N/W topologies and network analysis using graph theory.										
CO3	To under	understand various parameters of two-port networks & their relationship.										
CO4	To under	stand the cor	ncept of s	ynthesis of one port netw	ork.							

UNIT-I

TIME DOMAIN ANALYSIS: Transients in First and Second-order linear circuits-RL, RC and RLC. First-order differential equation and solution, Time constant, Second-order homogeneous differential equation and solution, RL, and RC sinusoidal transient.

UNIT-II

NETWORK FUNCTIONS & GRAPH THEORY: Basic Laplace and Inverse Laplace transformation rules, Laplace of Unit step, Ramp, Impulse waveforms, Initial and Final value theorem, Step response of RL, RC and RLC using Laplace transforms, Terminal pairs or Ports, Network functions for one-port and two-port networks, the concept of poles and zeros in Network functions, Restrictions on pole and zero. Locations for driving point functions and transfer functions. Principles of network topology, graph matrices, and network analysis using graph theory.

UNIT-III

TWO PORT NETWORKS: Characteristics and Parameters of two-port networks, Network Configurations, short circuit Admittance parameters, open-circuit impedance parameters, Transmission parameters, hybrid parameters, conditions for reciprocity & symmetry of two-port networks in different parameters representations. Inter-relationships between parameters of two-port network sets, Expression of input & output impedances in terms of two port parameters, Inter-connection of two port networks.

UNIT-IV

NETWORK SYNTHESIS: Hurwitz polynomials, Properties of Hurwitz polynomials, Positive real functions, procedure of testing of PR functions, concept and procedure of network synthesis, properties of expressions of driving point immitances of LC networks. LC Network synthesis: Foster's I & II Form, Cauer's I & II form, RC & RL Network.

REFERENCES:

1. Network Theory Analysis & Synthesis: Smarajit Ghosh; PHI.

- 2. Network Analysis & Synthesis: F.F. Kuo; John Wiley & Sons Inc.
- 3. Circuit Theory, A. Chakarbarti, Dhanpat Rai
- 4. Introduction to modern Network Synthesis: Van Valkenburg; John Wiley.
- 5. Network Analysis: Van Valkenburg; PHI.
- 6. Networks and Systems: D.Roy Choudhury; New Age International.

B23-	ECO- 208		Object Orie	nted Programming					
Lecture	Tutorial	Practical	Credit	End Semester Exam	Internal Assessment	Total	Duration of Exam		
3	-	-	3	70	30	100	3 Hrs.		
implemer Course C	nt the Object-O	riented Syste	m.			Languago			
CO 1	To elaborate t And the repres	he basic conc sentation.	epts of object	ct-oriented programn	ning language				
CO 2	To allocate dynamic memory, access private members of class and the behaviour of inheritance and its implementation.								
CO 3	To explore polymorphism, interface design and overloading of operator.								
CO 4	To examine general purpose template and handling of raised exception during programming.								

UNITI

Object Oriented Concepts, Introduction to Objects and Object-Oriented Programming, Encapsulation, Polymorphism, Overloading, Inheritance, Abstract Classes, Accessifier (public/protected/private), Class Scope and Accessing Class.

UNIT-II

Friend Function and Friend Classes, This Pointer, Dynamic Memory Allocation and Deallocation (New and Delete), Static Class Members, Constructors, parameter Constructors and Copy Constructors, Deconstructors, Introduction of inheritance, Types of Inheritance.

UNIT-III

Polymorphism, Virtual Functions, Pure Virtual Function, Abstract Base Classes, Static and Dynamic Binding. Fundamentals of Operator Overloading, Rules for Operators Overloading.

UNIT-IV

Basics of C++ Exception Handling, Try, Throw, Catch, multiple catch, Re-throwing an Exception, Exception specifications.

Fundamentals of Templates: Function Templates, Overloading Template Functions.

Suggested Books:

- 1. The complete reference C ++ by Herbert 30hield Tata McGraw Hill.
- 2. Object Oriented Programming in Turbo C++ by Robert Lafore, 1994, The WAITE Group Press.
- 3. Shukla, Object Oriented Programming in c++, Wiley India.
- 4. C++ How to Program by H M Deitel and P J Deitel, 1998, Prentice Hall.
- 5. Programming with C++ By D Ravichandran, 2003, T.M.H.

B23-HSM-302	Intellectual Property Rights (IPR) and Regulatory									
Lecture	Tutorial	Practical	Credit	End Semester Exam	Internal Assessment	Total	Duration of Exam			
3	-	-	3	70	30	100	3 Hrs.			
Purpose: The cou	Purpose: The course is designed to provide comprehensive knowledge to the students regarding the general principles of									
IPR, Concepts and	IPR, Concepts and Theories, and international regimes relating to IPR.									
Course Outcomes										
CO1	Students will be familiarized with the introduction to the patent concept and legal implications.									
CO2	Students will be able to understand the concept of copyright in detail.									
CO3	Students will be able to understand trademarks and the laws associated with them.									
CO4	Students will be able to learn about geographical Indications, industrial design and IPR in Information									
	Technolog	у.								

UNIT-I

Indian patent law: The Patents Act, 1970, amendments to the patents act, patentable subject matter, patentability criteria, procedure for filing patent applications, patent granting procedure, revocation, patent infringement and remedies, relevant provisions of the biological diversity act, 2002, access and benefit sharing issues, objectives, rights, patent act 1970 and its amendments. The procedure of obtaining patents, working of patents. Infringement.

UNIT-II

Copyrights: Introduction, works protected under copyright law, infringement. Introduction to copyright, international protection of copyright and related rights- an overview Indian copyright act, 1957 with its amendments, copyright works, ownership, transfer and duration of copyright, renewal and termination of copyright Industrial.

Designs: Need for protection of industrial designs, subject matter of protection and requirements, the designs act, 2000, procedure for obtaining design protection, revocation, infringement and remedies.

UNIT-III

Trademarks: Objectives, types, rights, protection of goodwill, infringement, passing off, need for protection of trademark, kinds of trademark , Indian trademarks law, procedural requirements of protection of trademarks, content of the rights, exhaustion of rights, procedural requirements of protection of trademarks, content of the rights, assignment under licensing, infringement, right of goodwill, passing off, domain names and effects of new technology (internet).

UNIT-IV

Geographical Indications: Objectives, Justification, International Position, Multilateral Treaties, National Level, Indian Position. Industrial Designs: Objectives, Rights, Assignments, Infringements, Information Technology Related Intellectual Property Rights, Computer Software and Intellectual Property, Database and Data Protection, Protection of Semiconductor chips, Domain Name Protection, Implications of intellectual property rights on the commercialization of Biotechnology products.

References:

1. N.S. Gopalakrishnan & T.G. Agitha, Principles of Intellectual Property (2009), Eastern Book Company, Lucknow David I. Bainbridge, Intellectual Property, Longman, 9th Edition, 2012

Susan K Sell, Private Power, Public Law: The Globalization of Intellectual Property Rights, Cambridge Univ. Press, 2003
N.S. Gopalakrishnan & T.G. Ajitha, Principles of Intellectual Property, Eastern Book Company, 2nd Edition, 2014

3. N.S. Gopalakrishnan & I.G. Ajitha, Principles of Intellectual Property, Eastern Book Company, 2rd Edition, 2014

- 4. Jayashree Watal, Intellectual Property Rights in the WTO and Developing Countries, Oxford University Press, 2001
- 5. Lionel Bently & Brad Sherman, Intellectual Property Law, Oxford University Press, 3rd Edition, 2008
- 6. Duggal Pavan, Legal Framework on Electronic Commerce & Intellectual
- 7. Property Rights, Universal Publishing House, 2014
- 8. Paul Torremans, Intellectual Property and Human Rights, Kluwer Law International, 2008
- 9. Anderman, Interface Between Intellectual Property Rights and Competition Policy, Cambridge University Press, 2007.
- 10. Philippe Cullet, Intellectual Property Protection and Sustainable Development, Lexis Nexis, 2005. Note: The paper setter will set the paper as per the guestion paper templates provided.

B23-ECO-210	Electrical Measurements and Instrumentation Lab									
Lecture	TutorialPracticalCreditPracticalInternalTotalDurationExamAssessmentExam									
0	0 2 1 60 40 100 3 Hrs.									
Program Objecti	Program Objective (PO): The main objective of the course is to impart the students with the knowledge of various types of									
instruments and	instruments and measurement of resistance, inductance and capacitance, displacement, pressure & temperature by									
bridges and tran	bridges and transducers									
Course Outcomes (CO)										
CO1	To understand the different types of meters.									
CO2	To measure the low and high resistance									
CO3	To calculate the inductance, capacitance and frequency using bridge.									
CO4	To measure the displacement, pressure & temperature by transducers.									

- 1. To convert & calibrate a D'Arsonnal type galvanometer into a voltmeter & an ammeter.
- 2. To calibrate an energy meter with the help of a standard wattmeter & stop watch.
- 3. To measure capacitance by Schering bridge.
- 4. To measure inductance by Maxwell's bridge.
- 5. To measure inductance by Hay's bridge.
- 6. To measure frequency by Wien's bridge.
- 7. To measure low resistance by Kelvin's Double bridge.
- 8. To measure high resistance by loss of charge method.
- 9. To measurer R, L, C, by Q meter.
- 10. To measure displacement by LVDT Transducer.
- 11. To measure displacement by Capacitance Transducer.
- 12. To measure pressure by Strain Gauge Transducer.
- 13. To measure temperature by RTD Transducer.

Note: At least Eight experiments should be performed from above list.

B23-ECO- 212	323-ECO- 212 Electrical Machines Lab-II									
Lecture	TutorialPracticalCreditPracticalInternalTotalDuration ofExamAssessmentExam									
•	-	2	1	60	40	100	3 Hrs.			
Purpose: To get acq	Purpose: To get acquaintance with the experiments of motors.									
Course Outcomes										
CO1	To perform load test and find out various parameters of three-phase induction motor.									
CO2	To understand effects of variation in different parameters on the operation of induction machine.									
CO3	To perform various tests on synchronous machine.									
CO4	To analyze various characteristics of synchronous machine.									

- 1. To perform load test on a 3-phase induction motor / DC generator set and to determine the efficiency of induction motor.
- 2. Determine mechanical losses by light running of a 3-phase induction motor.
- 3. Study and starting of 1-phase induction motor. To perform light running and block rotor test and to determine the parameters of the equivalent circuit.
- 4. To perform the open circuit test and block rotor test on 3-phase induction motor and draw the circle diagram.
- 5. To perform & study effect of rotor resistance on a poly phase slip ring induction motor.
- 6. To calculate regulation by synchronous impedance method: -
- a. Conduct open and short circuit test on a three-phase alternator.
- b. Determine and plot variation of synchronous impedance with If
- c. Determine SCR
- d. Determine regulations for 0.8 lagging power factor, 0.8 leading power factor and unity PF.
- 7. To plot V curves of a synchronous machine.
- a. Determination of Xo of a synchronous machine.
- b. Measurement Xd & Xq (Direct axis and Quadrature axis reactance) by slip test
- 8. To measure Xq of synchronous machine (negative sequence reactance).
- 9. To calculate regulation by ZPF method.
- 10. To perform and study parallel operation of synchronous generators.

Note: At least eight experiments should be performed from above list.

B23-ECO- 214	Object Oriented Programming Lab								
Lecture	TutorialPracticalCreditPracticalInternalTotalDurationExamAssessmentExam								
-	-	2	1	60	40	100	3 Hrs.		
Purpose: Intro	duce Object	-Oriented P	rogrammi	ing principles	and paradigms	to design	and		
implement Ob	implement Object-Oriented Systems.								
Course Outcomes									
CO1	To introduce the basic concepts of object-oriented programming language and its								
	representation.								
CO2	To allocate dynamic memory, access private members of class and the behaviour of								
	inheritance and its implementation.								
CO3	To introduce polymorphism, interface design and overloading of operator.								
CO4	To explore exception handling.								

- 1. WAP to find the sum of individual digits of a positive integer.
- 2. WAP to generate the first n terms of the sequence.
- 3. WAP to implement class with encapsulation.
- 4. WAP to implement access specifiers.
- 5. WAP to illustrate New and Delete Keywords for dynamic memory allocation
- 6. WAP to implement default constructor, parameterized constructor and copy constructors.
- 7. WAP to implement operator overloading.
- 8. WAP to implement inheritance.
- 9. WAP to implement types of inheritance.
- 10. WAP to implement abstract class.
- 11. WAP to implement virtual function.
- 12. WAP to implement function overriding.
- 13. WAP to implement exception handling.
- 14. WAP to implement templates.

Note: At least Eight experiments should be performed from the above list.

B23-MAC-201	Environmental Studies								
Lecture	Tutorial	Practical	Credit	Internal	End Semester	Total	Duration		
				Assessment	Exam		of Exam		
2			1	30	70	100	3 Hrs.		
Purpose: The students will familiarize themselves with natural resources, ecosystems, factors affecting									
environments and human relationship with nature.									
Course Outcomes (CO)									
CO1	Students will be able to understand the importance of natural resources.								
CO2	Students will understand the concept of an ecosystem, its structure, and its functions.								
CO3	The students will be able to understand the causes and impacts of various environmental								
	pollution.								
CO4	Students w	ill be able to	understa	nd the relationsh	nip between the hu	man popula	tion and the		
	environmer	nt.							

UNIT-1

Introduction to Environmental studies: The Multidisciplinary nature of environmental studies Definition; Scope and importance, Need for public awareness.

Natural Resources: Forest resources: Use and Over-exploitation, deforestation. Timber extraction, mining, dams, and their effects, Water resources: Use and over-utilization of surface and groundwater, conflicts over water, dams benefits and problems, Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, Food resources: changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, Energy resources: renewable and non-renewable energy sources, Land resources: land degradation, soil erosion, and desertification.

UNIT-II

Ecosystems: Concept of an ecosystem, Structure and function of an ecosystem, Energy flow in the ecosystem, Ecological succession, Food chains, food webs, and ecological pyramids. Major types of ecosystem-Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystem.

Biodiversity and its Conservation: Introduction-Definition: genetic, species, and ecosystem diversity. Biogeographical classification of India, Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values, India as a mega-diversity nation, Hot-spots of biodiversity, Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts, Endangered and endemic species of India, Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT-III

Environmental pollution: Causes, effects, and control measures of: - Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Nuclear hazards, and Solid waste Management: Causes, effects, and control measures of urban and industrial wastes, Disaster management: floods, earthquake, cyclone and landslides.

Social Issues and the Environment: Sustainable development, Water conservation, rainwater harvesting, Resettlement and rehabilitation of people; its problems and concerns. Environmental ethics: Issues and possible solutions, Climate change, global warming, acid rain, ozone layer depletion, and wasteland reclamation. Environment Protection Act, Air (Prevention and Control of Pollution) Act, Water (Prevention and Control of Pollution) Act, Water (Prevention and Control of Pollution) Act, Wildlife Protection Act., and Forest Conservation Act.

UNIT-IV

Human population and the Environment: Population growth, Population Explosion-Family welfare Programme, Environment and human health. Human Rights, Value Education, HIV/AIDS, Women and Child Welfare, Role of Information Technology in Environment and human health, Drugs and their effects; Useful and harmful drugs; Use and abuse of drugs; Stimulant and depressant drugs. Concept of drug de-addiction. Legal position on drugs and laws related to drugs.

Field Work (Practical)-

- Visit to a local area to document environmental assets -river/forest/grassland/ hill/mountain.
- Visit to a local polluted site- Urban/Rural/Industrial/Agricultural.
- Study of common plants, insects, and birds.
- Study of simple ecosystems- pond, river, hill slopes, etc.

Suggested readings:

- 1. Agarwal, K.C. 2001 Environmental Biology, Nidi Publ. Ltd. Bikaner.
- 2. Kaushik, Anubha and Kaushik, C.P. (2004 Perspectives in Environmental Studies, New age International Publishers.
- 3. Bharucha Erach, The Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahmedabad -380013, India, Email: mapin@icenet. net (R).
- 4. Brunner R.C., 1989, Hazardous Waste Incineration, McGraw Hill Inc. 480p.
- 5. Clerk B.S., Marine Pollution, Clanderson Pross Oxford (TB).
- 6. Cunningham, W.P.Cooper, T.H. Gorhani, E & Hepworth, M.T.2001, Environmental Encyclopedia, Jaico Publ. House, Mumbai, 1196p.
- 7. De A.K., Environmental Chemistry, Wiley Eastern Ltd.
- 8. Down to Earth, Centre for Science and Environment (R).